[image: image1.png]LanitTercom

Project

wcf-chunCking

Doc. responsible

Mbr

Quick guide
Introduction to ChunCking in WCF
 ADVANCE \y 580
Summary
This document gives an introduction to chunking binding and a quick guide to chunking in WCF.
 ADVANCE \y 685

Copy to

State
In preparation
File
Document8
Contents

31.
Introduction

1.1
Problem: Moving lots of data
3
1.2
Problem: Memory Utilization
3
1.3
Problem: Recovering from Failures
3
2.
Chunking channel
3
2.1
Chunking
3
2.2
Message Structure
3
2.3
Chunking Protocol
4
 2.3.1 Start Message
4

 2.3.2 Chunk Message
4
 2.3.3 End Message
5
3.
Chunking chunnel architecture
6

4.
adding chunking to projects and source files
6

4.1
An Ecample
7

5.
config file
7

5.1
Ecample
7

Document History

	Date
	Vers.
	Init.
	Description

	28-09-2007
	1.0
	mbr
	First version

	
	
	
	

1. Introduction
1.1 Problem: Moving lots of data
1.2 Problem: Memory Utilization
By default, WCF buffers messages to support protocols like WS-ReliableMessaging and WS-Security that require buffered messages. For extremely large messages this can lead to out-of-memory conditions especially on servers that try to send or receive multiple of those messages simultaneously.
1.3 Problem: Recovering from Failures
So what happens if half way through sending your 4GB stream the TCP connection fails? Well, your app must catch the exception and recover. If the other side has been processing the stream as it receives it (e.g. saving it to disk) you may be able to have the sending app coordinate with the receiving app to figure out what was the last received byte and restart from there.
Another alternative is to use Reliable Messaging to recover from connection failures. RM will detect the failure and automatically re-establish a connection and resend the failed message. The problem here is that when you're streaming, the entire stream is one message so resending means basically starting over. Another problem, is that RM requires buffering (so it can resend on failure) so it doesn't work with streaming!
2. Chunking channel
2.1 Chunking
is a technique that splits a large message into many smaller messages. Since the messages are now small, we can use buffered transfers without worrying about increased memory use. Since we have buffered transfers, we don't have to worry about changing the security mode or channel shape. And, we can apply reliable messaging to each individual chunk so that a message failure only requires the server to retransmit a small message.

2.2 Message Structure

The chunking channel assumes the following message structure for messages to be chunked:

<soap:Envelope ...>

 <!-- headers -->

 <soap:Body>

 <operationElement>

 <paramElement>data to be chunked</paramElement>

 </operationElement>

 </soap:Body>

</soap:Envelope>

2.3 Chunking Protocol
The chunking channel defines a protocol that indicates the start and end of a series of chunks as well as the sequence number of each chunk. The following three example messages demonstrate the start, chunk and end messages with comments that describe the key aspects of each.
2.3.1 Start Message

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"

 xmlns:s="http://www.w3.org/2003/05/soap-envelope">

 <s:Header>

<!—Original message action is replaced with a chunking-specific action. -->

 <a:Action s:mustUnderstand="1">http://samples.microsoft.com/chunkingAction</a:Action>

<!--

Original message is assigned a unique id that is transmitted

in a MessageId header. Note that this is different from the WS-Addressing MessageId header.

-->

 <MessageId s:mustUnderstand="1" xmlns="http://samples.microsoft.com/chunking">

53f183ee-04aa-44a0-b8d3-e45224563109

</MessageId>

<!--

ChunkingStart header signals the start of a chunked message.

-->

 <ChunkingStart s:mustUnderstand="1" i:nil="true" xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://samples.microsoft.com/chunking" />

<!--

Original message action is transmitted in OriginalAction.

This is required to re-create the original message on the other side.

-->

 <OriginalAction xmlns="http://samples.microsoft.com/chunking">

http://tempuri.org/ITestService/EchoStream

 </OriginalAction>

 <!--

 All original message headers are included here.

 -->

 </s:Header>

 <s:Body>

<!--

Chunking assumes this structure of Body content:

<element>

 <childelement>large data to be chunked<childelement>

</element>

The start message contains just <element> and <childelement> without

the data to be chunked.

-->

 <EchoStream xmlns="http://tempuri.org/">

 <stream />

 </EchoStream>

 </s:Body>

</s:Envelope>

2.3.2 Chunk Message

<s:Envelope

 xmlns:a="http://www.w3.org/2005/08/addressing"

 xmlns:s="http://www.w3.org/2003/05/soap-envelope">

 <s:Header>

 <!--

 All chunking protocol messages have this action.

 -->

 <a:Action s:mustUnderstand="1">

 http://samples.microsoft.com/chunkingAction

 </a:Action>

<!--

Same as MessageId in the start message. The GUID indicates which original message this chunk belongs to.

-->

 <MessageId s:mustUnderstand="1"

 xmlns="http://samples.microsoft.com/chunking">

 53f183ee-04aa-44a0-b8d3-e45224563109

 </MessageId>

<!--

The sequence number of the chunk.

This number restarts at 1 with each new sequence of chunks.

-->

 <ChunkNumber s:mustUnderstand="1"

 xmlns="http://samples.microsoft.com/chunking">

 1096

 </ChunkNumber>

 </s:Header>

 <s:Body>

<!--

The chunked data is wrapped in a chunk element.

The encoding of this data (and the entire message)

depends on the encoder used. The chunking channel does not mandate an encoding.

-->

 <chunk xmlns="http://samples.microsoft.com/chunking">

kfSr2QcBlkHTvQ==

 </chunk>

 </s:Body>

</s:Envelope>

2.3.3 End Message

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"

 xmlns:s="http://www.w3.org/2003/05/soap-envelope">

 <s:Header>

 <a:Action s:mustUnderstand="1">

 http://samples.microsoft.com/chunkingAction

 </a:Action>

<!--

Same as MessageId in the start message. The GUID indicates which original message this chunk belongs to.

-->

 <MessageId s:mustUnderstand="1"

 xmlns="http://samples.microsoft.com/chunking">

 53f183ee-04aa-44a0-b8d3-e45224563109

 </MessageId>

<!--

ChunkingEnd header signals the end of a chunk sequence.

-->

 <ChunkingEnd s:mustUnderstand="1" i:nil="true"

 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://samples.microsoft.com/chunking" />

<!--

ChunkingEnd messages have a sequence number.

-->

 <ChunkNumber s:mustUnderstand="1"

 xmlns="http://samples.microsoft.com/chunking">

 79

 </ChunkNumber>

 </s:Header>

 <s:Body>

<!--

The ChunkingEnd message has the same <element><childelement> structure

as the ChunkingStart message.

-->

 <EchoStream xmlns="http://tempuri.org/">

 <stream />

 </EchoStream>

 </s:Body>

</s:Envelope>

3. Chunking Channel Architecture

The chunking channel is an IDuplexSessionChannel, IReplyChannel or IRequestChannel that, at a high level, follows the typical channel architecture. There is a ChunkingBindingElement that can build a ChannelFactory(DuplexSessionChannelFactory, RequestChunkingChannelFactory) and a ChannelListener(DuplexSessionChannelListener, ReplyChunkingChannelListener). The ChannelFactory creates instances of ChunkingChannel (DuplexSessionChannel, ChunkingRequestChannel) when it is asked to. The ChannelListener creates instances of ChunkingChannel(DuplexSessionChannel, ChunkingReplyChannel) when a new inner channel is accepted. The ChunkingChannel itself is responsible for sending and receiving messages.

At the next level down, ChunkingChannel relies on several components to implement the chunking protocol. On the send side, the channel uses a custom XmlDictionaryWriter called Writer that does the actual chunking. Writer uses the inner channel that wrapped in ISender interface directly to send chunks. Using a custom XmlDictionaryWriter allows us to send out chunks as the large body of the original message is being written. This means we do not buffer the entire original message if using streaming.
On the receive side, ChunkingChannel pulls messages from the inner channel and hands them to a custom XmlDictionaryReader called Reader, which reconstitutes the original message from the incoming chunks. ChunkingChannel wraps this Reader in a custom Message implementation called ChunkingMessage and returns this message to the layer above. This combination of Reader and ChunkingMessage allows us to de-chunk the original message body as it is being read by the layer above instead of having to buffer the entire original message body. Reader has a queue where it buffers incoming chunks up to a maximum configurable number of buffered chunks. When this maximum limit is reached, the reader waits for messages to be drained from the queue by the layer above (that is, by just reading from the original message body) or until the maximum receive timeout is reached.
4. Adding Chunking to projects and source files
Service developers can specify which messages are to be chunked by applying the ChunkingBehavior attribute to operations within the contract. The attribute exposes an ChunkingAppliesTos and SendingTypes propertys. ChunkingAppliesTos property that the developer to specify whether chunking applies to the input message, the output message or both. These attributes are implemented in the System.ServiceModel.ChunkingBinding namespace. SendingTypes property that the developer to specify how chunking should go on(Streaming, like a String, or like an Object). These attributes are implemented in the System.ServiceModel.ChunkingBinding namespace. The project must have a reference to ChunkingBinding.dll. Each source file that use attributes must have a using statement to the System.ServiceModel.ChunkingBinding namespace.
 using System.ServiceModel.ChunkingBinding;
4.1 An Example

using System;

using System.ServiceModel;

using System.ServiceModel.Channels;

using System.IO;

using System.ServiceModel.ChunkingBinding;

namespace TestService

{

 [ServiceContract]

 interface ITestService

 {

 [OperationContract]

 //this means that we need chunking in Receive and that we are transferring Stream.

 [ChunkingBehavior(ChunkingAppliesTos.OutMessage, SendingTypes.SendStream)]

 Stream DownloadStream();

 [OperationContract()]

 //this means that we need chunking in Send and that we are transferring Stream by default.

 [ChunkingBehavior(ChunkingAppliesTos.InMessage)]

 void UploadStream(Stream stream);

 [OperationContract()]

 //this means that we need chunking in Send and Receive and that we are transferring some System.Object.

 [ChunkingBehavior(ChunkingAppliesTos.InMessage, SendingTypes.Other)]

 void UploadString(String stream);

 }
}
5. Config file

5.1 Example

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <services>

 <service name="NameSpaceOfTheService.ServiceClass">

 <endpoint address="net.tcp://localhost:9000/TestService"

 binding="customBinding"

 bindingConfiguration="ChunkingBindingElement"

 contract="NamespaceOfTheContract.IServiceInterface" />

 </service>

 </services>

 <bindings>

 <customBinding>

 <binding name="ChunkingBindingElement" >

 <!-- Cinfiguring ChunkSize and MaxBufferedChunks-->

 <ChunkingBindingElementExtension
ChunkSize="1024"

MaxBufferedChunks="30"/>

 <!-- This is the transport that we use. -->

 <tcpTransport/>

 </binding>

 </customBinding>

 </bindings>

 <!-- <extensions> is needed for configuration connection. -->

 <extensions>

 <bindingElementExtensions>

 <add
name="ChunkingBindingElementExtension" type="System.ServiceModel.ChunkingBinding.ChunkingBindingElementExtension, ChunkingBinding" />

 </bindingElementExtensions>

 </extensions>

 </system.serviceModel>

</configuration>

